
i i:i_: iii!!:< : : '< : :H' :: < '>:<<:_:: >< :: _< ¸¸.7¸ <:: :ii:i,!_ =: <i>:<: :::::::::::_::::::::::::::::::_:::: _,:::>:<':;<_:<::_<:<=: • ::<::>::::+::::+_.:i::::: i :<::::=i:::i:i::i:i:i:i: hi::::?<:i::i<:i:::i:i:i::::::i:;::.>>< ::i::::,!:i: _:!:_i:_:!:_:_:i:_:_:_:_:i_i_i:i::::_i:i_:_i:i:i_i:i:!:i_i::::_:_!_:_:_:_:_:!:_:!:_:i:_:{:!:!:!:_:i:i:_:i:i:!:_$_$_:_:_$_:_{_i_iij_i_ii!jii!i!i_i_i_i!i_i_i

i::i̧ ?:/k

ii<i171iii<%

i<iii_!!i<!i._

:ii_ ii_• i:,_,_?

_<i I

//

u

7¸¸:¸

:!ii¸¸

/} ;,. N95. 17243

SCL: An Off-The-Shelf System For Spacecraft Control

By: Brian Buckley & James Van Gaasbeck

Interface & Control Systems, Inc.

1942 South Dairy Road

Melbourne, FL 32904

i:i!>̧ .<-LI.> /:_:/_'_::
iiii> .: jill>>¸<._:."<.,,.">

Jr

Abstract

In this age of shrinking military, civil and
commercial space budgets, an off-the-shelf
solution is needed to provide a multi-mission
approach to spacecraft control. A standard
operational interface which can be applied to
multiple spacecraft allows a common approach to
ground and space operations. A trend for many
space programs has been to reduce operational
staff by applying autonomy to the spacecraft and
to the ground stations.

The Spacecraft Command Language (SCL)
system developed by Interface and Control
Systems, Inc. (ICS) provides an off-the-shelf
solution for spacecraft operations. The SCL
system is designed to provide a hyper-scripting
interface which remains standard from program to
program. The spacecraft and ground station
hardware specifics are isolated to provide the
maximum amount of portability from system to
system. Uplink and downlink interfaces are also
isolated to allow the system to perform
independent of the communications protocols
chosen. The SCL system can be used for both the
ground stations and the spacecraft, or as a value
added package for existing ground station
environments.

The SCL system provides an expanded stored
commanding capability as well as a rule-based
expert system on-board. The expert system
allows reactive control on-board the spacecraft
for functions such as Electrical Power Systems
(EPS), thermal control, etc. which have

traditionally been performed on the ground. The
SCL rule and scripting capability share a common
syntax allowing control of scripts from rules and
rules from scripts. Rather than telemeter over-
sampled data to the ground, the SCL system
maintains a database on-board which is available

for interrogation by the scripts and rules. The

SCL knowledge base is constructed on the ground
and uploaded to the spacecraft.

The SCL system follows an open-systems
approach allowing other tasks to communicate
with SCL on the ground, and in space. The SCL
system was used on the Clementine program
(launched January 25, 1994) and is required to
have bi-directional communications with the

Guidance, Navigation and Control (GNC)
algorithms which were written as another task.
Sequencing of the spacecraft maneuvers are
handled by SCL, but the low-level thruster pulse
commands are handled by the GNC software.
Attitude information is reported back as
telemetry, allowing the SCL expert system to
inference on the changing data. The Clementine
SCL Flight Software was largely re-used from
another Naval Center for Space Technology
(NCST) satellite program.

This paper will detail the SCL architecture and
how an off-the-shelf solution makes sense for

multi-mission spacecraft programs. The
Clementine mission will be used as a case study
in the application of the SCL to a "fast track"
program. The benefits of such a system in a
"better, cheaper, faster" climate will be discussed.

Introduction

In 1988, the Naval Center for Space Technology
(NCST) and Interface and Control Systems, Inc.
began development of a spacecraft controller for
a "black" program. Due to the political climate at
the time, the requirement was levied for 180 days
of autonomous operation for the satellite. Since
then, the politics have changed, but the system
which was designed and prototyped showed a
great deal of promise and was funded for

development even though the 180 day autonomy
requirement was discarded. ICS has evolved the
concept for Spacecraft Command Language
(SCL) over the years and has developed a
spacecraft flight control system which is

559

innovative in its approachto groundand space
standardization.

The SCL systemprovides an embeddedcontrol
systemsoftwarepackagefor the spacecraftwhich
uses a rule-based expert system. This A.I.
technique was prototyped and found to be
awkwardto usefor theday to dayoperationsof a
satellite. We found that adding a high-level
scripting capability integrated with forward
chainingrules providesa powerful alternativeto
the traditional approachto spacecraftcommand
and control. The SCL system is based on a
Hyperscripting languagewhich can beextended
to meet the mission unique aspect of each
spacecraft. The addedbenefit of this systemis
that it can be run on workstationsto control the
groundstationmissionoperations.Thesystemis
designed to be portable to a wide variety of
workstation-class computers and drives third
party graphicsproductsto provideavisualization
interface. The SCL systemis normally usedas
the integrating factor for ground stations. The
SCL systemis usedto sequenceoperationsand
control othersoftwarepackages,bothcustomand
CommercialOff TheShelf (COTS).

The SCL conceptis basedon the unification of
groundand spacewith the samecontrol system.
The SCL systemprovidesa flight control System
with an on-boarddatabaseallowing scripts and
rules to have visibility into on-board data
samples. The workstation version of the SCL
systemcanbeappliedfrom boardlevel checkout
up throughmissionoperations.The SCLsystem
not only allows re-useof the underlyingcontrol
system throughout the phases of satellite
development,but alsoallows re-useof thescripts
and rules which are developedto configure the
spacecraft. The SCL scripts and rules can be
developedandtestedin early phasesof I&T and
storedin arepository for usethroughoutthe life
of the spacecraft.This aidsin theConfiguration
Managementof "trusted"sequencesfor spacecraft
configuration. Thesetrusted sequencescan be
managed with a software configuration
managementtool andreferencedthroughoutthe
development cycle of the spacecraftprogram.
High-level mission tasking sequencescan build
uponunderlyingconfigurationscriptsandrules.

Domain experts can be interviewed and
knowledgeof systemoperationcanbecapturedin
the form of rules. These rules can be usedto
build up a simulationof the systemanddevelop
Fault Detection Isolation and Recovery(FDIR)

scenarios.TheSCL toolkit includesanIntegrated
Development Environment ODE) which can be
used on a desktop computer to prototype and test
control algorithms. The event-driven nature of
the SCL system makes it ideal for FDIR
scenarios. Interviewing domain experts early in
the project allows knowledge to be captured
thereby reducing the effects of the brain-drain
when key personnel leave the program.

SCL InMgra_d

Mission Tasking

Sub-System Conf(gurstlons

Box Level Conflgurlltlone

Comrnsnd & Telemetry Oe_(nlttons

Project

Figure 1. Approach to Knowledge Re-use

The Clementine spacecraft is a system which
validates the SCL concept. The SCL software was
originally developed for the NCST Advance
System Controller (ASC) program. The SCL

software and the flight controller and memory
cards were re-used for. the Clementine mission.

Control loops for the attitude control system were
analyzed and found to be appropriate for
development in a native language rather than
SCL.

The Clementine Guidance, Navigation and
Control (GNC) software was developed in C and
integrated as another task in the real-time
operating system. The SCL system was tailored
to allow bi-directional communication between

the SCL and GNC software. This capability was
eventually used to perform automated mapping of
the moon. Information from the GNC system
was used to sequence the commands required to
configure the payload and collect image data.

Another program has recently benefited from the
SCL software. The Environmental Research

560

!!ii_•i!ii!i!i_iiiiiiii:¸•

ii _,i:_/

!:•!!!/:i • :

_i!:i!!ii!_ii_

i:¸ i!i

!/!!i:ii
! _ _•i •_

+

!_ •i__::

Institute of Michigan (ERIM) has developed two
systems using the SCL system. The Autonomous
Rendezvous and Docking (ARD) mission was to
explore the feasibility of spacecraft performing
autonomous docking maneuvers and fluid transfer

experiments. The ARD system was developed
using SCL running on a single board computer
interfacing to a series of I/O cards. The ARD
payload passed acceptance tests and was
integrated with the satellite bus, docking
subsystem and fluid transfer systems. However,
ERIM has removed the ARD payload from the
Commercial Experiment Transporter (COMET)
and Conestoga launch vehicle manifest. ERIM is

currently searching for alternative launch
vehicles.

ERIM reused the flight controller hardware and
software design from ARD for the Robotic
Material Processing in Space (ROMPS)
experiment. ROMPS is a Space Shuttle Getaway
Special (GAS) experiment which is manifested
for flight on STS-64 on September 10, 1994. The
ROMPS flight system was largely based on the
ARD system with modifications to the low-level
software. The ROMPS mission is to perform
semiconductor annealing experiments in a
microgravity environment. The system will
control a robot and an annealing oven. This
program has used SCL as part of a low-cost
ground station. SCL is used in conjunction with
National Instruments LabViews on Macintosh

systems. LabViews provides a graphics engine
used for visualization of data by the SCL system.

In recent years, SCL has gained a great deal of
attention due to the desire for standardization of

spacecraft control systems. The SCL system is
portable to most embedded microprocessor
platforms and operating systems. The underlying
messaging system used for the uplink and
downlink protocol is isolated from the SCL
system. The Clementine system used the CCSDS
communications standard although most missions
have unique protocols. The AIAA, JPL, the Air
Force and NASA have been looking closely at
SCL as a basis for a standard on-board system
architecture. The fact that SCL can be used on

the ground also has added benefits in a "better,
cheaper, faster" environment.

The answer to better, cheaper, faster lies beyond
the Clementine mission. The Clementine mission

was a high-risk, fast-track mission which went
from vapor-ware to hardware in roughly two
years. A new management approach and many

innovative steps were taken along the way.
Traditional or "old guard" methods were
sidestepped to meet the aggressive schedule and
budget.

Its a money thing

Support for a standard operational approach to
spacecraft control is spawned by shrinking
budgets. Today's tight budget situations don't
allow for fresh starts; millions of dollars can be
spend replicating existing technology. Systems
such as SCL allow for multi-mission application
of the same control system. This standardization
reduces software development, training and
maintenance costs. Ground stations can be

retrofitted to support existing satellites with a
higher-level system which supports advanced
automation features. Operator workload can be
reduced, and advisory systems can be developed
using the Expert System which is incorporated in
the SCL system.

The key to developing a new software approach is
to invest in technology which embraces an Open
System architecture, industry standards, and
allows room for growth. New technologies can
be merged in as appropriate and existing code can
be replaced with COTS products. COTS
solutions will reduce the development and
maintenance costs since they can be spread across
a customer base. New technology can be phased-
in by using a value-added approach. Older, high-
maintenance code can be retired as confidence
grows in the newer system.

Training is important. Getting the day-to-day
users of the system up to date on the nuances of
the system will improve productivity and allow
exploitation of the new capabilities of the system.
Experts can provide help in choosing the best
alternative for implementation of requirements.
The experts need to be brought in at the
beginning when the Systems Engineering is being
done. Too often, a system is force fit into an
existing design when it could have been
engineered into a more elegant solution.

Below you will find a description of a system
which has taken this approach. The Clementine
spacecraft as well as the ROMPS GAS
experiment have developed operational concepts
around the SCL system.

561

!:!i:_!ii_!i_!_!!

!' _i i i_(i I

(

SCL System Architecture

The SCL system consists
components:

of five major

The database describes digital and analog
objects that represent spacecraft sensors and
actuators. The latest data sample for each item
is stored in the database. The database also
contains derived items that are artificial

telemetry items whose values are derived from
physical sensors. Examples of derived items
could be: average temperature, power based on
current and voltage monitors, subsystem status
variables, etc. These database objects include
command actuators for commanding the
spacecraft systems.

• The development environment is a window
based application that includes an integrated
editor, the SCL compiler, decompiler, cross-
reference system, explanation subsystem, and
filing system, The development environment
is also used as a front-end to control the SCL

RTE. A command window is used to provide
a command-line interface to the Real-Time

Executive (RTE). Extensive use of pull down
menus and dialogs are used to control the
system.

• The RTE is the portable multi-tasking
command interpreter and inference engine.
This segment represents the core of the flight
software. This portion of the software is
available in both C and Ada to allow ease of

porting to a specific hardware platform
(ground or space).

• The Telemetry Reduction program is
responsible for filtering acquired data, storing
significant changes in the database, and
presenting the changing data to the Inference
Engine. Limit checking and engineering unit
conversion can be enabled on a point by point
basis.

The project is the collection of SCL scripts and
rules that make up the knowledge base. On
ground based systems, the project contains an
integrated filing system to manage the
knowledge base. In the space environment, the
binary knowledge base is uploaded to the
spacecraft and stored in memory.

Depending on the needs of the user, all
components of SCL can be run on a single

system, or may be distributed among systems.

The development environment can be used to
directly connect to a local or remote version of
the SCL RTE. This direct connect capability is
also supported for the space segment to allow
interactive commanding of the system.

The Clementine Experience

The Clementine management approach was to
have a team of engineers to work on the project
from cradle to grave. There would be no
transition from one team to another. The

Clementine team was a talented group of young,
motivated engineers. The team had experience on
other satellite programs, but was young enough
not to be jaded by many of the large DoD and
NASA programs. The team made numerous
personal sacrifices for an opportunity to shake up
the satellite community.

Clementine Command And Telemetry

Software

The Clementine system software introduced
several new concepts to spacecraft command and
telemetry processing. These concepts supported
the rapid development of the Clementine flight
software. Most of these innovations are generic
in nature and can be applied to other spacecraft.
The following paragraphs will briefly describe
Clementine's command and telemetry software
and will highlight some of the innovative aspects
of the software.

Clementine Command Processing

The command processing software performs four
functions: (1) synchronize and reassemble
incoming command data words into command
packets; (2) verify and authenticate the command

packets; (3) dispatch complete command packets
to destination tasks; (4) execute command
processing control functions. Clementine
commands and data are formatted as packets with

a header that includes a word count, a routing
code, and a secondary identifier. The command
processing software receives these packets as a
stream of 16 bit words. The command software

reassembles a packet from the incoming data
words and after verifying and authenticating the
packet, passes it to the operating system through a
function call. The operating system software
delivers command packets to queues that are
assigned to software tasks. This arrangement

562

_:_ii,!_iii ¸

ii_,!!? _:_ _ ::_i

i!i.:i ¸ !i/ ;

:!!!ii;Jiii)ilil

;i!_; _i:'

i:_ :_:,

SCL

I SCL Scripts RTE Comm..ands
Change

& Rules Notice

Uplink

._r

Uplink

GN&C

SCL C&T

Database

TM

Reduction

Data

TM

Acquisition Data

Samples

Downlink

Formatter

Downlink

Solid

State
Recorder

Imag,

R3000

Image
Controllel

Figure 2. Clementine Flight Software Architecture

distributes the responsibility for command
execution among the various Clementine software
tasks. Because command execution is distributed
to other tasks the Clementine command

processing software is simply an input task which
forwards messages to other tasks.

The packetized command uplink simplified the
design of the command processing task and
supported the rapid development and integration
of Clementine's entire flight software system
because:

1. Only the packet header is fixed, the remainder

of the packet is defined by the receiving task.
This allowed software designers the freedom
to specify command formats that were suited
to their requirements.

2. It simplifies the integration of software
modules, such as the SCL Real Time Engine,
that were reused from other programs. SCL
software relied on command formats and

interfaces that were defined long before the
Clementine program was initiated.

3. New software tasks are added to the system

without impacting the command processing

software. A new task only has to create a
command queue and then register to receive
command packets through the queue. This
simplified the incremental build-up of the
flight software.

4. Command packets can be rerouted by
changing the routing code or by altering the
operating system's routing tables. This

capability was used operationally to support
some of the processor failure modes.

5. New commands can be defined without

impacting the command processing software.
This supported the incremental build-up of the
flight software.

Clementine Telemetry Processing

The Clementine telemetry processing software
performs four major functions: telemetry
acquisition, telemetry reduction, telemetry
distribution, and telemetry logging. All four
functions are implemented by a single software
task. The telemetry task operates in one of two

modes: bypass or DHU. When in the bypass
mode, the telemetry task is responsible for

formatting telemetry data into telemetry frames in
addition to the four functions listed above. When

563

i!_i(!

....i__!ii_:

,:_ , i ,/

• ,(

it is in the DHU mode the telemetry task
transmits its telemetry data to the Data Handling
Unit (DHU) which then is responsible for
formatting the data into telemetry frames. The
process that is responsible for formatting the
telemetry frames is responsible for transferring
the frame data to the downlink hardware
interface.

All of Clementine's telemetry, except for images
dumped from the Solid State Data Recorder
(SSDR), is organized into packets. Clementine
telemetry frames are not filled with commutated
data, as is the general case for spacecraft.
Instead, Clementine's telemetry frames serve as a
transport mechanism for the telemetry packets.
The telemetry packets are used to transport the
spacecraft's housekeeping, status, and memory
data.

Commutated telemetry frames do provide a
consistent source of data where housekeeping
measurements and status items such as

temperatures, voltages and relay indicators are
concerned. To fill this need for consistent

engineering data, the Clementine telemetry
system provides a packet that contains
synchronous, commutated data. The content of

the Housekeeping telemetry packet, or HK
packet, is defined by an uplinkable commutation
format. The commutation format specifies the
order in which the various spacecraft engineering

sensors are sampled. As many as four
commutation formats can stored in the spacecraft

memory and any one of the four formats can be
active. The Clementine commutation format

supports up to 16 variable length minor frames
per master frame and subcommutated telemetry
items up to 16 deep.

Telemetry Acquisition

The telemetry acquisition function is responsible
for processing the commutation formats. The
acquisition function processes the format
information, building up a minor frame in a
temporary buffer. When the minor frame is
complete, the acquisition function formats the
frame into a single HK packet and then transfers
the HK packet to the distribution function. The
acquisition function can be commanded to switch

to another of the four possible formats at any time
and it will begin processing the new format after
the current frame is complete.

The acquisition function is also responsible for
acquiring packetized telemetry from other
software tasks. An example of such a packet is
the Attitude packet produced by the Attitude
Determination and Control (ADAC) task. This
packet contains information that defines the
spacecraft's current attitude along with rate and
status information. The acquisition function
acquires these packets through message queues
which it creates and manages. Two queues are
created: the critical queue and the normal queue.
The critical queue is for status information that is
vital to the operation of the spacecraft such as the
current vehicle command count, telemetry
processing state and the spacecraft time. The
normal queue is for all other telemetry packets.

Telemetry Reduction

The telemetry reduction function is responsible
for maintaining the current telemetry value
database that is provided to support the
Spacecraft Command Language interpreter and
inference engine. The reduction function receives
identified telemetry values from the acquisition
function and processes the values before updating
the current value database with the telemetry
values. Two of the processing options performed
by the reduction function are change detection
and engineering unit conversion.

The telemetry reduction function also allowed
packets of data to be decommutated on-board to
allow the SCL script and rules to have visibility
into on-board data samples. This was a leap
forward from traditional spacecraft software
designs.

Telemetry Distribution

The distribution function is responsible for
prioritizing and distributing the telemetry packets
to the downlink. Packets from the Critical queue
are assigned the highest priority and are
distributed ahead of all other TM data. The HK

telemetry packets are next in priority and packets
from the Normal queue are assigned the lowest
priority. If the distribution function is operating
in the DHU mode, the function transfers the

packets in priority order to the DHU through a
dual port RAM buffer. The DHU is responsible
for inserting the individual packets into the
telemetry frame when operating in the DHU

564

;i̧i

ii!:i_

_!i:!i:i¸

:i

-- SEP DETECT -- Rule to detect separation from Titan II second stage.

-- Schedules separation operations script...this is the

-- initial sequence of events for Clementine

rule

subsystem

category

priority

activation

continuous

sep_detect

dspse

launch

30

yes

yes
if LVSEPINI = SEPARATD and LVSEPIN2 = SEPARATD then

deactivate sep_detect --make this rule dormant

-- establish attitude, take Star Tracker cal. shots

execute LEO_Sep_OPS in 1 second
end if

end sep_detect

-- LOWVDET -- detect low voltage & schedule the safing script

rule lowVdet

subsystem eps

category batteries

priority 4

activation yes

continuous yes
if rawvalue of BATTPMON <= 360 then

deactivate lowVdef --make this rule dormant

execute LEOsafing in 1 tick

end if

end lowVdet

-- LEOsafing -- script which safes the spacecraft

script LEOsafing

set DHUSELNO

execute ReactWheelsOff

set GNCII ALLSTOP

set SWCRITE2

execute IMUstop
execute TrackersOff

execute ACSDisable

execute CamsOff

-- Take no pics
-- RWs off

-- stop all S/C rotations

-- Image Processor Off

-- IMUs off

-- STS off

-- Turn off ACS

-- Cameras off

-- check if star tracker doors are open...if so close

if STARAOPN = 1 and STARBOPN = 1 then -- Close both doors together

execute ActBothDoors

execute ACSDisable in 180 seconds

else

if STARAOPN = 1 then

execute ACTSTA

end if

if STARBOPN = 1 then

execute ACTSTB

end if

execute ACSDisable in 180 seconds

end if

wait 1 second

set SWCRITEE -- Transmitter Off

end LEOsafing

-- Close A Only

-= Close B Only

Figure 3. Example of Clementine
Scripts & Rules

565

i!. i ¸¸ i ¸ : .:: : _ • _ • : _ : 5 • : _•, : :H• _•:H•: :.::+• : • : :. • •• : + .:•:. ::L<• :_:: • ::::::::••:i•:!:::::•::::::::::•:::_ .+_5:::5• _.:_:_:_:_::_•:_::+:_:i_::::_5:_:_:_:i:+:_:_:_:_•_:_::_:::_:::::_:_::::_:_:::_:_::_:_::_!:_:_:_:_:!:_:i:i_i:i:i_i:i

mode. If the distribution function is operating in
the Bypass mode it is responsible for inserting the
individual packets into the telemetry frame.

Telemetry Logging

The telemetry logging function is responsible for
storing a time history of selected telemetry items
in a log file on board the spacecraft. The purpose
of the log file is to provide a means of capturing
and storing telemetry data on board the spacecraft
during periods when the spacecraft is unable to
communicate with its ground stations. The log
can be dumped by ground command or stored
command. When the log is dumped, the log
records are formatted into telemetry packets and
transferred to the telemetry distribution function.

The log file can reside in either the HKP
processor's RAM or on the SSDR. The log can
be maintained in either stop on full format or in a
circular format where new telemetry values
overwrite the oldest values once the log becomes
full. Telemetry items are selected for logging by
ground command or by stored command.

The log file is maintained in a change only
format, that is, the telemetry items that are
selected for logging are first processed by the
telemetry reduction function to determine
whether the value of the item has changed since
the last time it was acquired. If the item did not
change it is not stored in the log. If the item did
change a record containing a time stamp, the
item's identifier, and the item's new value is

written to the log.

The logging function is designed to initialize the
log with the current value of all items that are
selected for logging when the log is created or
whenever it is reinitialized. This feature

establishes a baseline for the change only values
that will subsequently be written to the log.

Telemetry Processing Summary

The Clementine telemetry software introduced
several new ideas to spacecraft telemetry systems.
These innovations made significant contributions
to the rapid development and integration of the
Clementine flight software and contributed to the
efficient operation of the spacecraft. The
innovations include:

1. A packetized telemetry downlink which
provides for synchronous, commutated data
acquisition.

2. The capability to store multiple telemetry
commutation formats on board.

3. The ability to load new HK packet
commutation formats from the uplink.

4. An on-board telemetry storage log that is
filled with change only telemetry.

5. An on-board telemetry reduction process and
current telemetry value database.

Lessons Learned

The SCL system started life as a prototype system
which supported only rule-based processing. It
became obvious that it would be cumbersome to

apply a strictly rule-based system to spacecraft
command and control. ICS added the scripting
capability to SCL to support procedural, time-
based commanding scenarios. The scripting
capability was integrated with the rule-based
capability so that the system shared a common
syntax and command interpreter. The SCL
scripting capability is analogous to the Command
Storage Memory (CSM) on earlier spacecraft.
The SCL scripts and rules share a common
Hyperscripting grammar. The system was
developed in a manner to allow a core set of
directives to be supported, and allow the user to
extend the grammar with a mission unique set of
directives. The SCL compiler used in the ground
development environment allows addition of
keywords, and the Real-Time Engine (RTE) can
be extended to support the new features at run-
time.

The Clementine flight software team was made
up of several companies which worked together
(around the clock at times) to develop an
integrated system. The companies that developed
the flight software also developed the ground
station software together. This allowed interfaces
to be defined more easily and consistently. The
relatively small team worked to our advantage
since all the players knew each other by name and
could interact and make decisions quickly. There
were very few managers to interfere with the
decision making process. The NRL management
"rode herd" over the engineers and coordinated
the efforts. The team was able to work together
without corporate or political fences.

566

ii__i_i_

i!i_i _:i_ _ _

The engineers that performed the systems
engineering also developed the ground and flight
systems and flew the spacecraft during mission
operations. The cradle to grave philosophy
allowed for a consistent interface between

engineers. Day to day interaction between
companies maximizes progress in the fast-paced
development environment. Not having to
transition the program from one group to another
resulted in a substantial time and cost savings.
The engineers who were intimate with the

subsystem designs were responsible for the day-
to-day tasking of the satellite. This allowed for
experts to be available virtually anytime a
problem arose.

The development and integration of the software
was compressed into a short period of time. If a
development testbed for the flight software had
been available months sooner, a greater level of
testing could have been accomplished. As it was,
we had to schedule time at two sites: the testbed,
and the flight article. It wasn't unusual to have
around the clock and weekend testing, especially
towards the end of the schedule. Competition for
the testbed was at the point that one company
would jump on while another pulled back to
correct a software bug. Hardware bugs which
took the system down were devastating. Software
simulators for testing the Attitude Determination
and Control system were refined throughout the
life of the program. These simulations, along
with the Guidance Navigation and Control (GNC)
flight software evolved throughout the mission.
New code was uploaded to the spacecraft to
handle the current phase of the mission. Code
which handled earth orbit was obsolete for

handling lunar orbits, etc. This made for an
incremental development, test, and operate cycle
for the GNC code. This cycle worked out quite
well because of the high fidelity of the simulators
which were produced.

With the fury of software development activity on
a day to day basis, configuration management
was a monumental task. At times, 3 shifts a day
were modifying and testing code. The ground
software was evolving as quickly as the flight
software, :_wo t rstbeds needed to be kept in

vnc. Two accounts were maintained on the

tbed minicomputers. One was the operational
aunt, and the other was the development
_unt. Each shift was informed as to which

_unt was the current operational account and

what modifications had been made. Coordination

and attention to detail was mandatory.

The tight schedule and late availability of the
flight unit and testbed caused a compression of
the test schedule. Because the Clementine

sponsors were willing to accept some risk,
hardware and software testing was limited. The
orbital mechanics of the asteroid encounter

required that the spacecraft be launched at a given
date otherwise the opportunity would be missed.
The level of fault tolerant design for both
hardware and software are some of the tradeoffs

which had to be made. A single string system
was acceptable. The software was designed to
make up for some of the hardware shortcomings.

Once operational, the team faced new problems.
The one glaring problem was burnout of the
players. During the first week of operation, many
of the team slept on conference room tables, in
chairs, and on the floor (in the winter in
Alexandria, Virginia). Several people were told
to go home or to their hotels to get some sleep.
The dedication of the team members was

exemplary. Many hadn't seen their families in
many weeks, even then it was only for few days.

On-board operations proved to be tricky at times.
Many members of the team had developed
satellites in the past, but had not dealt with the
fact that they must monitor and command the
vehicle around the clock. The team tried to keep
a two day cushion on the mission tasking. This
would allow for light duty on weekends and allow
for problems to be investigated without the threat
of a missed pass looming over their head.

The set of software tools were limited. No

mission planning system existed. Many of the
passes followed a standard script: configure the
payload, slew the spacecraft, collect images to the
solid state recorder, turn off the payload, wait
until the earth is in view, slew the spacecraft and
dump the solid state recorder. The commands for
these scenarios were entered into Microsoft Excel

with formulas for the times. The orbit analysts
would determine the start time of the scenario and

a time could be filled in on the spreadsheet and all
other times calculated as an offset from the start

time. The command sequences were moved over
to the microVAX computers and translated into
an upload sequence by the SCL software.

The configuration management of the spacecraft
flight software and mission tasking sequences

ORJG_qJL_ PA_E R

C_' PO0_ _rT¥ 567

::iii_i: i:̧ ¸ri:: ::i: :: :: ,::: : :,::_ : :: ::: • :: :• :• •:: • • i: : •: ;: :" :' :: :•:: : :•::•L : •:::+. +• t_+:• : :+;: ::+• :+: •:::•: ::: ':::::::::::':::::::•::::: : :: :::: : : :: :::::::::::::_::::: _:_•_:_::_:_::::_::_:_•:_:•:•:+::+_:::::::::_:::_•:+:+:•_+:::_:_:::_:::::_:_::_:_::::_:::_:_._.:._._.:.:+:.:._:_::_:::_:_:_:_::::_:_:::::::::::_:::::::::_:::::::_:_:::_:_:i:_:::_:5_:::_::_

" 'i'?

!::i i:i i:

!_!iii_i!!iili

•T

was limited to a CM tool and a log book. The
spacecraft would occasionally have a system reset
which would require that all code patches be
uploaded and a new set of tasking sequences be
uploaded. This had to be managed by hand and
was subject to human errors. It would have made
a great deal of sense to have a software tool to
automate the management of the flight software
and mission tasking.

The lesson that Clementine points out is that code
re-use is a key factor in the success of a fast track

program. Having a flexible architecture which
can be applied from one program to another
allows for substantial time and cost savings. The
Clementine flight software and ground system
software relied heavily on software which had
been developed for other Naval Center for Space
Technology programs. These systems along with
other software originally developed for NASA
were merged along with some new concepts to
develop a flexible command and telemetry system
which itself can be used on other programs.

Conclusions

systems will be compared. The flexibility of the
architecture and the open systems aspect of the
SCL software gives the system broad appeal.

The system does introduce information
management problems that are overcome by
software tools and a disciplined approach to
configuration management, This approach must
also extend to the distribution of flight and
ground databases and knowledge bases. The
system is several years into its development, has
been the subject of numerous proofs-of-concept,
and is in use at several sites. The SCL system
provides a low-cost, low-risk solution for many of
today's command and control environments.

The success of the Clementine mission lies with
the dedication of the team members and their

talent in the development of a spacecraft in a
surprisingly short period of time. They were able
to draw on experience and re-use software and
hardware designs from other programs to develop
a system which is flexible and pushes the state of
the art in software technology for spacecraft.

The SCL system has proven that a re-usable
system can be successfully used for spacecraft
command and control. All of Clementine's

requirements were met with the exception of the
asteroid flyby. The SCL system also helps
promote a standard interface for the many facets
of ground and space. The ROMPS Space Shuttle
GAS experiment is due to fly in September of
1994. The ROMPS flight will lend further
evidence that a multi-mission control system can
be deployed. Although ARD and ROMPS are

dissimilar missions, they are using the same
hardware and software design. There is already
talk of another flight for the ROMPS experiment.

The Clementine flight control software is general
purpose in nature and can easily be adapted to
other programs. The SCL system itself is being
commercially marketed for workstations and
embedded systems. The SCL system also has
applicability to industrial control systems,
Intelligent Vehicle Highway System (IVHS),
medical, petrochemical and power system
industries.

JPL, the AIAA and the Air Force have used the

SCL system as a basis for standardization efforts.
ICS is presently on several technology steering
committees for DoD and Civil space. The SCL
system sets a benchmark against which other

568

:iii

i!!_ii:_!i

:!)ii::! •_:•ii:¸ _•T:•

i!ii_i i _:i_i!:i
!i? _:_i_I_

